28 research outputs found

    NKX2-1/TTF-1: An Enigmatic Oncogene that Functions as a Double-Edged Sword for Cancer Cell Survival and Progression

    Get PDF
    Emerging evidence indicates that NKX2-1, a homeobox-containing transcription factor also known as TTF-1, plays a role as a “lineage-survival” oncogene in lung adenocarcinomas. In T cell acute lymphoblastic leukemia, gene rearrangements lead to aberrant expression of NKX2-1/TTF-1. Despite accumulating evidence supporting its oncogenic role, it has become apparent that NKX2-1/TTF-1 expression also has biological and clinical functions in the opposite direction that act against tumor progression. Herein, we review recent findings showing these enigmatic double-edged characteristics, with special attention given to the roles of NKX2-1/TTF-1 in lung development and carcinogenesis

    Transport and magnetic properties of Co-doped BaFe_{2}As_{2} epitaxial thin films

    Full text link
    We report resistivity, Hall coefficient, current-voltage characteristics, and magneto-optical imaging measurements of epitaxial Co-doped BaFe_{2}As_{2} thin films deposited on MgO(001) substrate. The Hall resistivity of the films has a substantial contribution arising from anomalous Hall effect of ferromagnetic components. The critical current density (J_{c}) of the films is ~2 MA/cm^{2} at low temperatures. Differential magneto-optical images of the remanent state give similar J_{c} values and also exhibit presence of extended defects in the film.Comment: 9 pages, 4 figure

    NKX2-1/TITF1/TTF-1-Induced ROR1 Is Required to Sustain EGFR Survival Signaling in Lung Adenocarcinoma

    Get PDF
    SummaryWe and others previously identified NKX2-1, also known as TITF1 and TTF-1, as a lineage-survival oncogene in lung adenocarcinomas. Here we show that NKX2-1 induces the expression of the receptor tyrosine kinase-like orphan receptor 1 (ROR1), which in turn sustains a favorable balance between prosurvival PI3K-AKT and pro-apoptotic p38 signaling, in part through ROR1 kinase-dependent c-Src activation, as well as kinase activity-independent sustainment of the EGFR-ERBB3 association, ERBB3 phosphorylation, and consequential PI3K activation. Notably, ROR1 knockdown effectively inhibited lung adenocarcinoma cell lines, irrespective of their EGFR status, including those with resistance to the EGFR tyrosine kinase inhibitor gefitinib. Our findings thus identify ROR1 as an “Achilles' heel” in lung adenocarcinoma, warranting future development of therapeutic strategies for this devastating cancer

    The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression.

    Get PDF
    Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer

    A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption : The J-MICC Study

    Get PDF
    Coffee is one of the most widely consumed beverages worldwide, and its role in human health has received much attention. Although genome-wide association studies (GWASs) have investigated genetic variants associated with coffee consumption in European populations, no such study has yet been conducted in an Asian population. Here, we conducted a GWAS to identify common genetic variations that affected coffee consumption in a Japanese population of 11,261 participants recruited as a part of the Japan Multi-Institutional Collaborative Cohort (J-MICC) study. Coffee consumption was collected using a self-administered questionnaire, and converted from categories to cups/day. In the discovery stage (n = 6,312), we found 2 independent loci (12q24.12–13 and 5q33.3) that met suggestive significance (P < 1 × 10−6). In the replication stage (n = 4,949), the lead variant for the 12q24.12–13 locus (rs2074356) was significantly associated with habitual coffee consumption (P = 2.2 × 10−6), whereas the lead variant for the 5q33.3 locus (rs1957553) was not (P = 0.53). A meta-analysis of the discovery and replication populations, and the combined analysis using all subjects, revealed that rs2074356 achieved genome-wide significance (P = 2.2 × 10−16 for a meta-analysis). These findings indicate that the 12q24.12-13 locus is associated with coffee consumption among a Japanese population

    A Novel Network Profiling Analysis Reveals System Changes in Epithelial-Mesenchymal Transition

    Get PDF
    Patient-specific analysis of molecular networks is a promising strategy for making individual risk predictions and treatment decisions in cancer therapy. Although systems biology allows the gene network of a cell to be reconstructed from clinical gene expression data, traditional methods, such as Bayesian networks, only provide an averaged network for all samples. Therefore, these methods cannot reveal patient-specific differences in molecular networks during cancer progression. In this study, we developed a novel statistical method called NetworkProfiler, which infers patient-specific gene regulatory networks for a specific clinical characteristic, such as cancer progression, from gene expression data of cancer patients. We applied NetworkProfiler to microarray gene expression data from 762 cancer cell lines and extracted the system changes that were related to the epithelial-mesenchymal transition (EMT). Out of 1732 possible regulators of E-cadherin, a cell adhesion molecule that modulates the EMT, NetworkProfiler, identified 25 candidate regulators, of which about half have been experimentally verified in the literature. In addition, we used NetworkProfiler to predict EMT-dependent master regulators that enhanced cell adhesion, migration, invasion, and metastasis. In order to further evaluate the performance of NetworkProfiler, we selected Krueppel-like factor 5 (KLF5) from a list of the remaining candidate regulators of E-cadherin and conducted in vitro validation experiments. As a result, we found that knockdown of KLF5 by siRNA significantly decreased E-cadherin expression and induced morphological changes characteristic of EMT. In addition, in vitro experiments of a novel candidate EMT-related microRNA, miR-100, confirmed the involvement of miR-100 in several EMT-related aspects, which was consistent with the predictions obtained by NetworkProfiler

    Zebrafish models for cancer research

    No full text
    corecore